Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
ACS Omega ; 9(12): 13704-13713, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559999

ABSTRACT

The integration of low-dimensional nanomaterials with microscale architectures in flexible pressure sensors has garnered significant interest due to their outstanding performance in healthcare monitoring. However, achieving high sensitivity across different magnitudes of external pressure remains a critical challenge. Herein, we present a high-performance flexible pressure sensor crafted from biomimetic hibiscus flower microstructures coated with silver nanowires. When compared with a flat electrode, these microstructures as electrodes display significantly enhanced sensitivity and an extended stimulus-response range. Furthermore, we utilized an ionic gel film as the dielectric layer, resulting in an enhancement of the overall performance of the flexible pressure sensor through an increase in interfacial capacitance. Consequently, the capacitive pressure sensor exhibits an extraordinary ultrahigh sensitivity of 48.57 [Kpa]-1 within the pressure range of 0-1 Kpa, 15.24 [Kpa]-1 within the pressure range of 1-30 Kpa, and 3.74 [Kpa]-1 within the pressure range of 30-120 Kpa, accompanied by a rapid response time (<58 ms). The exceptional performance of our flexible pressure sensor serves as a foundation for its numerous applications in healthcare monitoring. Notably, the flexible pressure sensor excels not only in detecting subtle physiological signals such as finger and wrist pulse signals, vocal cord vibrations, and breathing intensity but also demonstrates excellent performance in monitoring higher pressures, such as plantar pressure. We foresee that this flexible pressure sensor possesses significant potential in the field of wearable electronics.

2.
Article in English | MEDLINE | ID: mdl-38082969

ABSTRACT

Facial stimulation can produce specific event-related potential (ERP) component N170 in the fusiform gyrus region. However, the role of the fusiform gyrus region in facial preference tasks is not clear at present, and the current research of facial preference analysis based on EEG signals is mostly carried out in the scalp domain. This paper explores whether the region of the fusiform gyrus is involved in processing face preference emotions in terms of the distribution of energy over the source domain, and finds that the pars orbitalis cortex is most energetically active in the face preference task and that there are significant differences between the left and right hemispheres.Clinical Relevance- The role of pars orbitalis in facial preference may help doctors determine whether the pars orbitalis cortex is lost in clinical practice.


Subject(s)
Electroencephalography , Evoked Potentials , Evoked Potentials/physiology , Cerebral Cortex , Temporal Lobe/physiology , Emotions/physiology
3.
Article in English | MEDLINE | ID: mdl-38083718

ABSTRACT

Steady-state visual evoked potential (SSVEP) is one of the main paradigms of brain-computer interface (BCI). However, the acquisition method of SSVEP can cause subject fatigue and discomfort, leading to the insufficiency of SSVEP databases. Inspired by generative determinantal point process (GDPP), we utilize the determinantal point process in generative adversarial network (GAN) to generate SSVEP signals. We investigate the ability of the method to synthesize signals from the Benchmark dataset. We further use some evaluation metrics to verify its validity. Results prove that the usage of this method significantly improved the authenticity of generated data and the accuracy (97.636%) of classification using deep learning in SSVEP data augmentation.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Visual , Electroencephalography/methods , Photic Stimulation/methods , Databases, Factual
4.
Front Neurol ; 14: 1143955, 2023.
Article in English | MEDLINE | ID: mdl-37538258

ABSTRACT

Background: The activation patterns and functional network characteristics between stroke survivors and healthy individuals based on resting-or task-state neuroimaging and neurophysiological techniques have been extensively explored. However, the discrepancy between stroke patients at different recovery stages remains unclear. Objective: To investigate the changes in brain connectivity and network topology between subacute and chronic patients, and hope to provide a basis for rehabilitation strategies at different stages after stroke. Methods: Fifteen stroke survivors were assigned to the subacute group (SG, N = 9) and chronic group (CG, N = 6). They were asked to perform hand grasping under active, passive, and MI conditions when recording EEG. The Fugl-Meyer Assessment Upper Extremity subscale (FMA_UE), modified Ashworth Scale (MAS), Manual Muscle Test (MMT), grip and pinch strength, modified Barthel Index (MBI), and Berg Balance Scale (BBS) were measured. Results: Functional connectivity analyses showed significant interactions on frontal, parietal and occipital lobes connections in each frequency band, particularly in the delta band. The coupling strength of premotor cortex, M1, S1 and several connections linked to frontal, parietal, and occipital lobes in subacute subjects were lower than in chronic subjects in low alpha, high alpha, low beta, and high beta bands. Nodal clustering coefficient (CC) analyses revealed that the CC in chronic subjects was higher than in subacute subjects in the ipsilesional S1 and occipital area, contralesional dorsolateral prefrontal cortex and parietal area. Characteristic path length (CPL) analyses showed that CPL in subacute subjects was lower than in chronic subjects in low beta, high beta, and gamma bands. There were no significant differences between subacute and chronic subjects for small-world property. Conclusion: Subacute stroke survivors were characterized by higher transfer efficiency of the entire brain network and weak local nodal effects. Transfer efficiency was reduced, the local nodal role was strengthened, and more neural resources needed to be mobilized to perform motor tasks for chronic survivors. Overall, these results may help to understand the remodeling pattern of the brain network for different post-stroke stages on task conditions and the mechanism of spontaneous recovery.

5.
Article in English | MEDLINE | ID: mdl-37285244

ABSTRACT

Wrist exoskeletons are increasingly being used in the rehabilitation of stroke and hand dysfunction because of its ability to assist patients in high intensity, repetitive, targeted and interactive rehabilitation training. However, the existing wrist exoskeletons cannot effectively replace the work of therapist and improve hand function, mainly because the existing exoskeletons cannot assist patients to perform natural hand movement covering the entire physiological motor space (PMS). Here, we present a bioelectronic controlled hybrid serial-parallel wrist exoskeleton HrWr-ExoSkeleton (HrWE) which is based on the PMS design guidance, the gear set can carry out forearm pronation/supination (P/S) and the 2-DoF parallel configuration fixed on the gear set can carry out wrist flexion/extension (F/E) and radial/ulnar deviation (R/U). This special configuration not only provides enough range of motion (RoM) for rehabilitation training (85F/85E, 55R/55U, and 90P/90S), but also makes it easier to provide the interface for finger exoskeletons and be adapted to upper limb exoskeletons. In addition, to further improve the rehabilitation effect, we propose a HrWE-assisted active rehabilitation training platform based on surface electromyography signals.


Subject(s)
Exoskeleton Device , Wrist , Humans , Wrist/physiology , Upper Extremity , Wrist Joint/physiology , Radius/physiology , Range of Motion, Articular/physiology
6.
Med Biol Eng Comput ; 61(9): 2481-2495, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37191865

ABSTRACT

A brain-computer interface (BCI) system and virtual reality (VR) are integrated as a more interactive hybrid system (BCI-VR) that allows the user to manipulate the car. A virtual scene in the VR system that is the same as the physical environment is built, and the object's movement can be observed in the VR scene. The four-class three-dimensional (3D) paradigm is designed and moves synchronously in virtual reality. The dynamic paradigm may affect their attention according to the experimenters' feedback. Fifteen subjects in our experiment steered the car according to a specified motion trajectory. According to our online experimental result, different motion trajectories of the paradigm have various effects on the system's performance, and training can mitigate this adverse effect. Moreover, the hybrid system using frequencies between 5 and 10 Hz indicates better performance than those using lower or higher stimulation frequencies. The experiment results show a maximum average accuracy of 0.956 and a maximum information transfer rate (ITR) of 41.033 bits/min. It suggests that a hybrid system provides a high-performance way of brain-computer interaction. This research could encourage more interesting applications involving BCI and VR technologies.


Subject(s)
Brain-Computer Interfaces , Virtual Reality , Humans , Electroencephalography/methods , Evoked Potentials, Visual , Photic Stimulation/methods
7.
J Neurosci Methods ; 390: 109839, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36933706

ABSTRACT

BACKGROUND: Most epilepsy research is based on interictal or ictal functional connectivity. However, prolonged electrode implantation may affect patients' health and the accuracy of epileptic zone identification. Brief resting-state SEEG recordings reduce the observation of epileptic discharges by reducing electrode implantation and other seizure-inducing interventions. NEW METHOD: The location coordinates of SEEG in the brain were identified using CT and MRI. Based on undirected brain network connectivity, five functional connectivity measures and data feature vector centrality were calculated. Network connectivity was calculated from multiple perspectives of linear correlation, information theory, phase, and frequency, and the relative influence of nodes on network connectivity was considered. We investigated the potential value of resting-state SEEG for epileptic zone identification by comparing the differences between epileptic and non-epileptic zones, as well as the differences between patients with different surgical outcomes. RESULTS: By comparing the centrality of brain network connectivity between epileptic and non-epileptic zones, we found significant differences in the distribution of brain networks between the two zones. There was a significant difference in brain network between patients with good surgical outcomes and those with poor surgical outcomes (p < 0.01). By combining support vector machines with static node importance, we predicted an AUC of 0.94 ± 0.08 for the epilepsy zone. CONCLUSIONS AND SIGNIFICANCE: The results illustrated that nodes in epileptic zones are distinct from those in non-epileptic zones. Analysis of resting-state SEEG data and the importance of nodes in the brain network may contribute to identifying the epileptic zone and predicting the outcome.


Subject(s)
Brain Mapping , Epilepsy , Humans , Brain Mapping/methods , Electroencephalography/methods , Brain , Seizures/diagnostic imaging
8.
Environ Sci Pollut Res Int ; 30(18): 52749-52761, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36843164

ABSTRACT

Heavy metal contamination in soils seriously threatens human health and aggravates the global pollution burden. In this study, we investigated the risk of heavy metal contamination in soils at a Zn-Pb mineral processing plant in Longnan, China, and the effects of different heavy metal contamination levels on diverse microbial communities. Statistical analysis showed that, except for Ni, the average content of all detected metals (Zn, Pb, As, Cu, Cd, Hg) in the soil was higher than the background value of soil in the study area, which was most seriously contaminated with Pb and As. Comparison of functional divisions showed that heavy metal soil contamination was most serious in the raw material stacking area and the production area. Interpolation analysis showed that areas closer to the wastewater discharge area had higher contents of each heavy metal and were more seriously polluted. From the point of pollution index, the risk of heavy metal soil pollution in the study area was very high (RI = 2845.24, i.e., > 600), with Cd and Hg being the most serious pollutants compared with other heavy metals. Microbial community abundance, diversity, and structure differed at different levels of heavy metal contamination. The community diversity of bacteria decreased with increasing heavy metal concentrations, while no significant change in fungi was observed. Evidence from variation redundancy analysis (RDA) and the Spearman correlation analysis showed that the leading factors affecting microbial community composition were Cu, Cd, Hg, and pH. Actinobacteria and Gemmatimonadetes at the uncontaminated level (CL) were significantly and negatively correlated with the concentrations of Cu, Zn, Cd, and Pb. Proteobacteria and Chloroflexi at the severely contaminated level (SL) were significantly correlated with pH and Hg. However, heavy metal contamination had less effect on most of the dominant fungi. In conclusion, microbial communities such as Proteobacteria, Actinobacteria, Chloroflexi, and Ascomycota showed greater tolerance to heavy metals. These results could be used as important references for the remediation of heavy metal-contaminated soils.


Subject(s)
Chloroflexi , Mercury , Metals, Heavy , Microbiota , Soil Pollutants , Humans , Soil/chemistry , Lead/analysis , Cadmium/analysis , Soil Pollutants/analysis , Environmental Monitoring , Metals, Heavy/analysis , Environmental Pollution/analysis , Mining , Mercury/analysis , Risk Assessment , Bacteria , China , Fungi , Zinc/analysis
9.
J Neural Eng ; 19(6)2022 12 16.
Article in English | MEDLINE | ID: mdl-36541542

ABSTRACT

Objective.The brain-computer interface (BCI) system based on sensorimotor rhythm can convert the human spirit into instructions for machine control, and it is a new human-computer interaction system with broad applications. However, the spatial resolution of scalp electroencephalogram (EEG) is limited due to the presence of volume conduction effects. Therefore, it is very meaningful to explore intracranial activities in a noninvasive way and improve the spatial resolution of EEG. Meanwhile, low-delay decoding is an essential factor for the development of a real-time BCI system.Approach.In this paper, EEG conduction is modeled by using public head anatomical templates, and cortical EEG is obtained using dynamic parameter statistical mapping. To solve the problem of a large amount of computation caused by the increase in the number of channels, the filter bank common spatial pattern method is used to obtain a spatial filter kernel, which reduces the computational cost of feature extraction to a linear level. And the feature classification and selection of important features are completed using a neural network containing band-spatial-time domain self-attention mechanisms.Main results.The results show that the method proposed in this paper achieves high accuracy for the four types of motor imagery EEG classification tasks, with fairly low latency and high physiological interpretability.Significance.The proposed decoding framework facilitates the realization of low-latency human-computer interaction systems.


Subject(s)
Brain-Computer Interfaces , Humans , Imagination/physiology , Signal Processing, Computer-Assisted , Electroencephalography/methods , Imagery, Psychotherapy , Algorithms
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3678-3681, 2022 07.
Article in English | MEDLINE | ID: mdl-36086144

ABSTRACT

Event-related potentials (ERP) are brain-evoked potentials that reflect the neural activity of the brain. However, it is difficult to isolate the ERP components of our interest because single-trial EEG is disturbed by other signals, and the average ERP analysis in turn loses single-trial information. In this paper, we used electrophysiological source imaging (ESI) to analyze the N170 component of single-trial EEG triggered by face stimulation. The results show that ESI is feasible for the analysis of N170 and that there are left-right differences in the area of the fusiform gyrus associated with face stimulation in the brain. Clinical Relevance- Analysis of the N170 of single-trial EEG by ESI may help in the diagnosis of patients with prosopagnosia and may also help physicians clinically in determining whether the fusiform gyrus region is damaged.


Subject(s)
Electroencephalography , Face , Brain Mapping , Electroencephalography/methods , Evoked Potentials/physiology , Humans , Temporal Lobe
11.
Micromachines (Basel) ; 13(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144107

ABSTRACT

PDMS (polydimethylsiloxane) is an important soft biocompatible material, which has various applications such as an implantable neural interface, a microfluidic chip, a wearable brain-computer interface, etc. However, the selective removal of the PDMS encapsulation layer is still a big challenge due to its chemical inertness and soft mechanical properties. Here, we use an excimer laser as a cold micro-machining tool for the precise removal of the PDMS encapsulation layer which can expose the electrode sites in an implantable neural interface. This study investigated and optimized the effect of excimer laser cutting parameters on the electrochemical impedance of a neural electrode by using orthogonal experiment design. Electrochemical impedance at the representative frequencies is discussed, which helps to construct the equivalent circuit model. Furthermore, the parameters of the equivalent circuit model are fitted, which reveals details about the electrochemical property of neural electrode using PDMS as an encapsulation layer. Our experimental findings suggest the promising application of excimer lasers in the micro-machining of implantable neural interface.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3586-3589, 2022 07.
Article in English | MEDLINE | ID: mdl-36083918

ABSTRACT

Brain-computer interface (BCI) system based on sensorimotor rhythm (SMR) is a more natural brain-computer interaction system. In this paper, we propose a new multi-task motor imagery EEG (MI-EEG) classification framework. Unlike traditional EEG decoding algorithms, we perform the decoding task in the source domain rather than the sensor domain. In the proposed algorithm, we first build a conduction model of the signal using the public ICBM152 head model and the boundary element method (BEM). The sensor domain EEG was then mapped to the selected cortex region using standardized low-resolution electromagnetic tomography (sLORETA) technology, which benefit to address volume conduction effects problem. Finally, the source domain features are extracted and classified by combining FBCSP and simple LDA. The results show that the classification-decoding algorithm performed in the source domain can well solve the classification task of MI-EEG. In addition, we found that the source imaging method can significantly increase the number of available EEG channels, which can be expanded at least double. The preliminary results of this study encourage the implementation of EEG decoding algorithms in the source domain. Clinical Relevance- This confirms that better results can be obtained by performing MI-EEG decoding in the source domain than in the sensor domain.


Subject(s)
Brain-Computer Interfaces , Imagination , Algorithms , Electroencephalography/methods , Imagery, Psychotherapy
13.
Polymers (Basel) ; 14(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35893997

ABSTRACT

Parylene is used as encapsulating material for medical devices due to its excellent biocompatibility and insulativity. Its performance as the insulating polymer of implantable neural interfaces has been studied in electrolyte solutions and in vivo. Biological tissue in vitro, as a potential environment for characterization and application, is convenient to access in the fabrication lab of polymer and neural electrodes, but there has been little study investigating the behaviors of Parylene in the tissue in vitro. Here, we investigated the electrochemical impedance behaviors of Parylene C polymer coating both in normal saline and in a chilled pig brain in vitro by performing electrochemical impedance spectroscopy (EIS) measurements of platinum (Pt) wire neural electrodes. The electrochemical impedance at the representative frequencies is discussed, which helps to construct the equivalent circuit model. Statistical analysis of fitted parameters of the equivalent circuit model showed good reliability of Parylene C as an insulating polymer in both electrolyte models. The electrochemical impedance measured in pig brain in vitro shows marked differences from that of saline.

14.
Front Hum Neurosci ; 16: 909610, 2022.
Article in English | MEDLINE | ID: mdl-35832876

ABSTRACT

Traditional rehabilitation strategies become difficult in the chronic phase stage of stroke prognosis. Brain-computer interface (BCI) combined with external devices may improve motor function in chronic stroke patients, but it lacks comprehensive assessments of neurological changes regarding functional rehabilitation. This study aimed to comprehensively and quantitatively investigate the changes in brain activity induced by BCI-FES training in patients with chronic stroke. We analyzed the EEG of two groups of patients with chronic stroke, one group received functional electrical stimulation (FES) rehabilitation training (FES group) and the other group received BCI combined with FES training (BCI-FES group). We constructed functional networks in both groups of patients based on direct directed transfer function (dDTF) and assessed the changes in brain activity using graph theory analysis. The results of this study can be summarized as follows: (i) after rehabilitation training, the Fugl-Meyer assessment scale (FMA) score was significantly improved in the BCI-FES group (p < 0.05), and there was no significant difference in the FES group. (ii) Both the global and local graph theory measures of the brain network of patients with chronic stroke in the BCI-FES group were improved after rehabilitation training. (iii) The node strength in the contralesional hemisphere and central region of patients in the BCI-FES group was significantly higher than that in the FES group after the intervention (p < 0.05), and a significant increase in the node strength of C4 in the contralesional sensorimotor cortex region could be observed in the BCI-FES group (p < 0.05). These results suggest that BCI-FES rehabilitation training can induce clinically significant improvements in motor function of patients with chronic stroke. It can improve the functional integration and functional separation of brain networks and boost compensatory activity in the contralesional hemisphere to a certain extent. The findings of our study may provide new insights into understanding the plastic changes of brain activity in patients with chronic stroke induced by BCI-FES rehabilitation training.

15.
Comput Intell Neurosci ; 2022: 8112375, 2022.
Article in English | MEDLINE | ID: mdl-35310583

ABSTRACT

Goal. Stroke patients are usually accompanied by motor dysfunction, which greatly affects daily life. Electroacupuncture is a kind of nondrug therapy that can effectively improve motor function. However, the effect of electroacupuncture is hard to be measured immediately in clinic. This paper is aimed to reveal the instant changes in brain activity of three groups of stroke patients before, during, and after the electroacupuncture treatment by the EEG analysis in the alpha band and beta band. Methods. Seven different functional connectivity indicators including Pearson correlation coefficient, spectral coherence, mutual information, phase locking value, phase lag index, partial directed coherence, and directed transfer function were used to build the BCI-based brain network in stroke patients. Results and Conclusion. The results showed that the brain activity based on the alpha band of EEG decreased after the electroacupuncture treatment, while in the beta band of EEG, the brain activity decreased only in the first two groups. Significance. This method could be used to evaluate the effect of electroacupuncture instantly and quantitatively. The study will hopefully provide some neurophysiological evidence of the relationship between changes in brain activity and the effects of electroacupuncture. The study of BCI-based brain network changes in the alpha and beta bands before, during, and after electroacupuncture in stroke patients of different periods is helpful in adjusting and selecting the electroacupuncture regimens for different patients. The trial was registered on the Chinese clinical trial registry (ChiCTR2000036959).


Subject(s)
Brain-Computer Interfaces , Electroacupuncture , Stroke , Brain , Electroencephalography/methods , Humans , Stroke/therapy
16.
Micromachines (Basel) ; 13(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35208323

ABSTRACT

The advent of optogenetics provides a well-targeted tool to manipulate neurons because of its high time resolution and cell-type specificity. Recently, closed-loop neural manipulation techniques consisting of optical stimulation and electrical recording have been widely used. However, metal microelectrodes exposed to light radiation could generate photoelectric noise, thus causing loss or distortion of neural signal in recording channels. Meanwhile, the biocompatibility of neural probes remains to be improved. Here, five kinds of neural interface materials are deposited on flexible polyimide-based neural probes and illuminated with a series of blue laser pulses to study their electrochemical performance and photoelectric noises for single-unit recording. The results show that the modifications can not only improve the electrochemical performance, but can also reduce the photoelectric artifacts. In particular, the double-layer composite consisting of platinum-black and conductive polymer has the best comprehensive performance. Thus, a layer of polypeptide is deposited on the entire surface of the double-layer modified neural probes to further improve their biocompatibility. The results show that the biocompatible polypeptide coating has little effect on the electrochemical performance of the neural probe, and it may serve as a drug carrier due to its special micromorphology.

17.
J Neural Eng ; 19(1)2022 02 10.
Article in English | MEDLINE | ID: mdl-35078158

ABSTRACT

Objective.Brain-computer interface (BCI) based on motor imaging electroencephalogram (MI-EEG) can be useful in a natural interaction system. In this paper, a new framework is proposed to solve the MI-EEG binary classification problem.Approach.Electrophysiological source imaging (ESI) technology is used to solve the influence of volume conduction effect and improve spatial resolution. Continuous wavelet transform and best time of interest (TOI) are combined to extract the optimal discriminant spatial-frequency features. Finally, a convolutional neural network with seven convolution layers is used to classify the features. In addition, we also validated several new data augment methods to solve the problem of small data sets and reduce network over-fitting.Main results.The model achieved an average classification accuracy of 93.2% and 95.4% on the BCI Competition III IVa and high-gamma data sets, which is better than most of the published advanced algorithms. By selecting the best TOI for each subject, the classification accuracy rate increased by about 2%. The effects of four data augment methods on the classification results were also verified. Among them, the noise addition and overlap methods are better than the other two, and the classification accuracy is improved by at least 4%. On the contrary, the rotation and flip data augment methods reduced the classification accuracy.Significance.Decoding MI tasks can benefit from combing the ESI technology and the data augment technology, which is used to solve the problem of low spatial resolution and small samples of EEG signals, respectively. Based on the results, the model proposed has higher accuracy and application potential in the task of MI-EEG binary classification.


Subject(s)
Brain-Computer Interfaces , Algorithms , Electroencephalography , Imagination/physiology , Neural Networks, Computer , Wavelet Analysis
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 500-503, 2021 11.
Article in English | MEDLINE | ID: mdl-34891342

ABSTRACT

EEG can be used to characterize the electrical activity of the cerebral cortex, but it is also susceptible to interference. Compared with the other artifacts, Electrooculogram (EOG) artifacts have a greater impact on EEG processing and are more difficult to remove. Here, we mainly compared the regression and ICA algorithms both based on the EOG channels for the effect of removing EOG artifacts in the Stroop experiment of methamphetamine addicts. From the perspective of time domain and power spectral density, the ICA algorithm based on the EOG channels is more effective. However, the regression algorithm based on the EOG channels is less complex, more time-saving, and more suitable for real-time tasks.Clinical Relevance- For clinical purposes, this research has a certain reference value for selecting appropriate methods of removing EOG artifacts when processing the EEG of methamphetamine addicts.


Subject(s)
Methamphetamine , Signal Processing, Computer-Assisted , Artifacts , Electroencephalography , Electrooculography
19.
Biosens Bioelectron ; 194: 113592, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34507098

ABSTRACT

Neural electrical interfaces are important tools for local neural stimulation and recording, which potentially have wide application in the diagnosis and treatment of neural diseases, as well as in the transmission of neural activity for brain-computer interface (BCI) systems. At the same time, magnetic resonance imaging (MRI) is one of the effective and non-invasive techniques for recording whole-brain signals, providing details of brain structures and also activation pattern maps. Simultaneous recording of extracellular neural signals and MRI combines two expressions of the same neural activity and is believed to be of great importance for the understanding of brain function. However, this combination makes requests on the magnetic and electronic performance of neural interface devices. MRI-compatibility refers here to a technological approach to simultaneous MRI and electrode recording or stimulation without artifacts in imaging. Trade-offs between materials magnetic susceptibility selection and electrical function should be considered. Herein, prominent trends in selecting materials of suitable magnetic properties are analyzed and material design, function and application of neural interfaces are outlined together with the remaining challenge to fabricate MRI-compatible neural interface.


Subject(s)
Biosensing Techniques , Artifacts , Brain/diagnostic imaging , Electricity , Magnetic Resonance Imaging
20.
Neural Plast ; 2021: 6641506, 2021.
Article in English | MEDLINE | ID: mdl-33777135

ABSTRACT

Flaccid paralysis in the upper extremity is a severe motor impairment after stroke, which exists for weeks, months, or even years. Electroacupuncture treatment is one of the most widely used TCM therapeutic interventions for poststroke flaccid paralysis. However, the response to electroacupuncture in different durations of flaccid stage poststroke as well as in the topological configuration of the cortical network remains unclear. The objectives of this study are to explore the disruption of the cortical network in patients in different durations of flaccid stage and observe dynamic network reorganization during and after electroacupuncture. Resting-state networks were constructed from 18 subjects with flaccid upper extremity by partial directed coherence (PDC) analysis of multichannel EEG. They were allocated to three groups according to time after flaccid paralysis: the short-duration group (those with flaccidity for less than two months), the medium-duration group (those with flaccidity between two months and six months), and the long-duration group (those with flaccidity over six months). Compared with short-duration flaccid subjects, weakened effective connectivity was presented in medium-duration and long-duration groups before electroacupuncture. The long-duration group has no response in the cortical network during electroacupuncture. The global network measures of EEG data (sPDC, mPDC, and N) indicated that there was no significant difference among the three groups. These results suggested that the network connectivity reduced and weakly responded to electroacupuncture in patients with flaccid paralysis for over six months. These findings may help us to modulate the formulation of electroacupuncture treatment according to different durations of the flaccid upper extremity.


Subject(s)
Electroacupuncture/methods , Electroencephalography/methods , Paralysis/physiopathology , Paralysis/therapy , Stroke/physiopathology , Stroke/therapy , Adult , Aged , Beta Rhythm/physiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Paralysis/etiology , Pilot Projects , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...